Multiple ETS Family Proteins Regulate PF4 Gene Expression by Binding to the Same ETS Binding Site
نویسندگان
چکیده
In previous studies on the mechanism underlying megakaryocyte-specific gene expression, several ETS motifs were found in each megakaryocyte-specific gene promoter. Although these studies suggested that several ETS family proteins regulate megakaryocyte-specific gene expression, only a few ETS family proteins have been identified. Platelet factor 4 (PF4) is a megakaryocyte-specific gene and its promoter includes multiple ETS motifs. We had previously shown that ETS-1 binds to an ETS motif in the PF4 promoter. However, the functions of the other ETS motifs are still unclear. The goal of this study was to investigate a novel functional ETS motif in the PF4 promoter and identify proteins binding to the motif. In electrophoretic mobility shift assays and a chromatin immunoprecipitation assay, FLI-1, ELF-1, and GABP bound to the -51 ETS site. Expression of FLI-1, ELF-1, and GABP activated the PF4 promoter in HepG2 cells. Mutation of a -51 ETS site attenuated FLI-1-, ELF-1-, and GABP-mediated transactivation of the promoter. siRNA analysis demonstrated that FLI-1, ELF-1, and GABP regulate PF4 gene expression in HEL cells. Among these three proteins, only FLI-1 synergistically activated the promoter with GATA-1. In addition, only FLI-1 expression was increased during megakaryocytic differentiation. Finally, the importance of the -51 ETS site for the activation of the PF4 promoter during physiological megakaryocytic differentiation was confirmed by a novel reporter gene assay using in vitro ES cell differentiation system. Together, these data suggest that FLI-1, ELF-1, and GABP regulate PF4 gene expression through the -51 ETS site in megakaryocytes and implicate the differentiation stage-specific regulation of PF4 gene expression by multiple ETS factors.
منابع مشابه
Evolutionarily conserved Ets family members display distinct DNA binding specificities [published erratum appears in J Exp Med 1993 Sep 1;178(3):1133]
Members of the Ets family of proto-oncogenes encode sequence-specific transcription factors that bind to a purine-rich motif centered around a conserved GGA trinucleotide. Ets binding sites have been identified in the transcriptional regulatory regions of multiple T cell genes including the T cell receptor alpha and beta (TCR-alpha and -beta) enhancers and the IL-2 enhancer, as well as in the e...
متن کاملETS transcription factors regulate the expression of the gene for the human mitochondrial ATP synthase beta-subunit.
Elements responsible for the transcriptional activity of the human ATP synthase beta-subunit (ATPsyn beta) gene promoter have been studied through transient expression in HepG2 hepatoma cells of a CAT gene connected with various 5'-deletion mutants of the 5'-flanking region. Promoter activity was mostly dependent upon a single CCAAT motif as well as a nearby Ets domain binding region. This last...
متن کاملMechanistic heterogeneity in site recognition by the structurally homologous DNA-binding domains of the ETS family transcription factors Ets-1 and PU.1.
ETS family transcription factors regulate diverse genes through binding at cognate DNA sites that overlap substantially in sequence. The DNA-binding domains of ETS proteins (ETS domains) are highly conserved structurally yet share limited amino acid homology. To define the mechanistic implications of sequence diversity within the ETS family, we characterized the thermodynamics and kinetics of D...
متن کاملHomeodomain proteins MEIS1 and PBXs regulate the lineage-specific transcription of the platelet factor 4 gene.
Platelet factor 4 (PF4) is expressed during megakaryocytic differentiation. We previously reported that GATA-1 and ETS-1 regulate the rat PF4 promoter and transactivate the PF4 gene. For the present study, we investigated the regulatory elements and their transcription factors responsible for the lineage-specific expression of the PF4 gene. The promoter activities of deletion constructs were ev...
متن کاملParticipation of Ets transcription factors in the glucocorticoid response of the rat tyrosine aminotransferase gene.
We have previously shown that two remote glucocorticoid-responsive units (GRUs) of the rat tyrosine aminotransferase (TAT) gene contain multiple binding sites for several transcription factor families, including the glucocorticoid receptor (GR). We report here the identification of two novel binding sites for members of the Ets family of transcription factors in one of these GRUs. One of these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011